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I consider the statistical mechanics of inhomogeneous fluids applied to fluids adsorbed in planar wedges.
Exact results are described that belong to an infinite subset of models defined as the intersection of any two
identical semi-infinite planar wall-fluid potentials. This geometry is interesting as a generic example of ad-
sorption onto structured interfaces and of interfacial phase transitions controlled by the substrate geometry.
Previously described virial theorems are extended to the case of a general wall-fluid model. This enables the
consideration of wedge filling when Young’s contact angle far from the wedge apex is finite. The virial
theorems generate two important relations: the wedge sum rules. The first sum rule links the interfacial free
energy far from the wedge apex to the structure induced at the apex. The second sum rule links the free energy
of the apex region to the structure induced by the apex. When Young’s contact angle at the wedge walls is finite
these relations further yield an exact result for the macroscopic contact angle in terms of the nanoscopic
structure at the three-phase contact line(the intersection of the liquid-vapor surface with a wedge wall): the
contact angle sum rule. These exact results are of direct relevance to computer simulation studies of adsorbed
films. In addition, they take on special significance in the vicinity of continuous interfacial phase transitions: an
approach to complete filling and the filling transition at bulk liquid-vapor coexistence.
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I. INTRODUCTION

The equilibrium statistical mechanics of inhomogeneous
fluids has largely been developed in semi-infinite planar ge-
ometry[1,2]. Recent advances in technology have created an
interest in extending this exact knowledge to liquid films
adsorbed on substrates that are structured on the nano, meso
and macro scales. This paper argues that models of fluids
adsorbed in a planar wedge can usefully be regarded as a
generic class of structured inhomogeneous fluids. Previous
work has concentrated on hard-wall boundary conditions,
where the relevance of geometry is particularly clear[3,4]. In
Secs. II and III below I consider the generalization to stan-
dard models of wall-fluid interfaces, such as square-well
fluid at a square-well wall, or Lennard-Jones fluid at a 9-3 or
10-4-3 wall. Colloidal systems are also relevant, due to the
depletion attraction between colloidal particles and a wall.
Section II considers the virial route of statistical mechanics,
applied to systems where one of the boundary walls is
grooved in a series of macroscopic planar wedges. The
physical relevance of such a model is discussed in some
detail, with emphasis on the attractive interactions arising
from the wedge walls. With certain provisos, one arrives at
generalizations of exact results previously derived for hard-
wall boundary conditions, that hereinafter are referred to as
the wedge sum rules(Sec. III).

Parry, Rascon, and Wood, in particular, have emphasized
that wedge geometry introduces classes of interfacial phase
transitions, intimately linked with wetting transitions at a
semi-infinite planar wall[5,6]. This leads to interfacial criti-
cal phenomena partly controlled by the geometric parameters
defining the structured surface: in particular, the approach to
complete filling of a wedge, from off bulk liquid-vapor co-
existence, and the associated filling transition at liquid-vapor
coexistence. The presence of these interfacial phase transi-
tions allows for arbitrary control over the amount of ad-

sorbed fluid. It is here that the key significance of the attrac-
tive wall-fluid interactions arises. Namely, a wedge can be
filled with a mesoscopic or macroscopic amount of liquid,
even though far from the apex the wedge walls are not wet
by liquid, [7,8]. This arises provided Young’s contact angleu
with the wedge walls is finite. In theory the wedge can then
be partly filled by saturated liquid by reducing the opening
angle of the wedgesbd towards the value at which the liquid-
vapor surface lies completely flat across the wedge:b=p
−2u. At this special wedge angle a macroscopic planar
wedge can adsorb an arbitrary but finite amount of saturated
liquid, while maintaining mechanical equilibrium, the so-
called filling condition. For more acute wedges the amount
of liquid adsorbed in the wedge can be controlled by increas-
ing the vapor pressure towards saturation; known as an ap-
proach to complete filling. If the system is kept at liquid-
vapor coexistence and a thermodynamic quantity controlling
u, such as temperatureT, or alternatively the geometric
quantityb is varied, so that the filling condition is reached,
then the system undergoes an interfacial phase transition
known as the filling transition. Theory implies that the filling
transition will often be a continuous phase transition, even
though the wetting transition atu=0+ would normally be first
order [5].

From the physical existence of the continuous approach to
complete filling at a finite contact angle(or a continuous
filling transition) it follows that one can use the statistical
mechanics of fluid adsorbed in a planar wedge as an alterna-
tive route to modeling the classical capillarity of three-phase
coexistence and Young’s contact angle. In Sec. IV below I
show that this approach has the interesting advantage in pro-
viding virial theorems for the macroscopic Young’s contact
angle. Section V focuses on the filling transition itself, as-
suming it to be continuous, in the context of virial theorems.
Both Secs. IV and V are outcomes of the explicit consider-
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ation of attractive wall-fluid interactions. Hard-wall bound-
ary conditions cannot be associated with a contact angle at
the wedge walls less thanp, because at liquid-vapor coex-
istence a planar hard wall is completely dry(i.e., the inter-
face between a hard wall and saturated liquid consists of a
macroscopic film of vapor). Thus hard-wall boundary condi-
tions can only be used to discuss the approach to complete
emptying at u=p, which is essentially equivalent to ap-
proaching filling in real systems whenu=0.

II. VIRIAL THEOREMS FOR WEDGE GEOMETRY

Virial theorems in classical statistical mechanics are gen-
erated by enclosing a many-body system with boundary
walls and then considering the changes in free-energy arising
from an infinitesimal translation of one or more of the walls.
Since the total free energy of the system is stationary at
equilibrium, at linear order the work done on the fluid by the
walls must be equal and opposite to the work done on the
walls by the fluid. Exact sum rules arise provided one can
usefully partition these two classes of work, although this
can sometimes be far from straightforward in practice[9].
Virial theorems therefore come in complementary pairs,
whereby the intermolecular interactions and correlations ap-
pearing in a theorem either belong to the fluid-wall interface
or to the fluid region far from the boundary that has been
moved. One can transform between these equivalent sum
rules by integrating the condition for mechanical equilibrium
across the boundary wall[10].

Let us now consider a standard virial analysis for the sys-
tem sketched in Fig. 1. Only the right-hand boundary will be
moved as part of the virial process, along thex direction. The
left-hand boundary is not drawn nor considered below be-
cause the system is taken to be macroscopic so that there are
no fluid-mediated interactions between bulk fluid(at xb) and
the right-hand wall. Similarly, there are no interactions be-
tween the inhomogeneous fluid regions at macroscopically
separated sections of the walls. The right-hand wall in Fig. 1
has a geometry such that it creates three identical planar
wedges of opening angleb. Two of these wedges involve the
horizontal planar walls at the top and bottom of the system,
which will be taken to be identical to the walls forming the
right-hand wedge. Due to the two-dimensional symmetry we
can takeLy→` first, which is equivalent to ignoring theb
=p /2 side wedges. For any given wedge, we can regard the
position of a relevant wedge wall to be defined by a linear
function xwszd. The walls drawn in Fig. 1 and below repre-
sent the surface of infinite repulsion between the one-body
external fieldvextsr d that defines any wall-fluid model and
the centers of the fluid molecules; in particular, this bounds
the volumeV accessible to the centers of the molecules. As I
shall discuss in Sec. III, it is implicit that all iso-potential
surfaces defined byvextsr d, such as attractive wall-fluid inter-
actions, possess the identical wedge geometry of the repul-
sive boundary.

To derive the desired virial theorem consider an infinitesi-
mal change in the value ofLx, which is equivalent to a trans-
lation of that part ofvextsr d associated with the far-right
boundary only:

] vext
„sx − Lxd,y,z…

] Lx
= −

] vext
„sx − Lxd,y,z…

] x
. s1d

An important wedge sum rule then follows from the virial
theorem[2]

] V

] Lx
=E drrsr d

] vextsr d
] Lx

s2d

=−E
0

Ly

dyE
0

Lz

dzE
xb

`

dxrsr d,xvextsr d s3d

=−E
0

Ly

dyE
0

Lz

dzpTsy,z;x = xbd. s4d

Here I have taken the free energy to be the fluid Grand po-
tentialV. The Grand ensemble is the usual ensemble applied
to inhomogeneous fluids since they are typically defined as
subsystems in equilibrium with bulk fluid. The derivation of
Eq. (3) from Eq. (2) has used Eq.(1). The step from Eq.(3)
to Eq. (4) is much bigger and involves the condition for
mechanical equilibrium(or equivalently the conservation of
momentum) in the form [11]

FIG. 1. System geometry used for the derivation of virial theo-
rems for fluids in a planar wedge. Here, I have chosen one example
of a planar wedge structure to the right-hand boundary of the sys-
tem. For this example, the construction generates three identical
planar wedges each of opening angleb=2p /3. The quantityxw

denotes the position of this right-hand boundary wall. For rigorous
derivations, any system should be fully enclosed by containing
walls. To aid the reader with imagining the figure as forming part of
the boundary of a three-dimensional box(with a structured right-
hand wall) I have sketched the right-hand boundary in three dimen-
sions and drawn part of a side wall lying in thexz plane. Only the
right-hand wall of this box is structured, so that the top and bottom
walls (lying in thexy plane) are planar rectangles(not fully drawn).
Note that, apart from the three wedges whose opening angles are
labeledb, all the remaining intersections between adjacent walls
generate right-angled wedgessb=p /2d. The dashed line denotes a
distance from the right-hand boundary at which the presence of the
b=2p /3 wedges is no longer felt. I have not drawn the left-hand
boundary nor additional sidewalls because these play no role in the
subsequent derivations. In the thermodynamic limit, all of the sta-
tistical mechanics derived in this paper applies to fluid adsorbed in
a single wedge defined as the intersection of two identical semi-
infinite planar walls, at an arbitrary value ofb.
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− rsr d,xvextsr d = kT,xrsr d + ko
i

dsr − r id,i
xFl, s5d

wherek denotes Boltzmann’s constant and the total system
Hamiltonian isH;F+oi vextsr id. Integrating the expression
(5) leads to the general form

E
xb

`

dxrsr d,xvextsr d

= kTrsxb,y,zd −E
xb

`

dxko
i

dsr − r id,i
xFl s6d

;kTrsxb,y,zd −E
xb

`

dx,bpc
xbsr d, s7d

where the final line has introduced the configurational con-
tribution to the pressure tensor(note the use of the summa-
tion convention to imply thatb is summed overx,y,z).
When Eq. (7) is introduced into Eq.(3) the off-diagonal
terms in the pressure tensorsb=y,zd do not contribute. Thus,
the final integral in Eq.(3) can be replaced by

kTrsxb,y,zd + pc
xxsy,z;x = xbd ; pTsy,z;x = xbd, s8d

where the subscriptT denotes the transverse component of a
pressure tensor; i.e., transverse to the planar walls of Fig. 1
in the vicinity of x=xb, [11]. In the Appendix below, I
present for completeness an explicit derivation of the above
formalism for pair potential models.

From Eq.(4) we obtain precisely the anticipated form for
the work done on the fluid due to the virial procedure

] V

] Lx
= − pLyLz +E

0

Ly

dyE
0

Lz

dzfp − pTsy,z;x = xbdg s9d

=− pLyLz + 2gsLy + Lzd, s10d

where p denotes the bulk fluid pressure andg is the wall-
fluid surface tension of the planar wall-fluid interfaces atx
=xb. That is, whenLx is scaled by an infinitesimal amount
the changes to the system depicted in Fig. 1 involve a change
in volume, a change in the surface areas of the planar side
walls and a change in the length of the right-angled wedges
running along the sides[note that I have neglected this final
higher-order contribution on the right of Eq.(10)]. All of
these changes can be regarded as occurring macroscopically
to the left of the right-hand wall in Fig. 1, because this latter
interfacial region is completely unchanged by a different
choice ofLx. Accordingly, the virial theorem has yielded a
sum rule for the surface tension of the planar regions of the
wall-fluid interface. In the form of Eq.(9) it is just the well-
known virial expression[1], while in the complementary
form (3) the planar surface tension is defined in terms of the
wall-fluid interfacial structure in the apex regions of the
wedges on the right side of Fig. 1. It is, of course, this latter
version that we shall now focus attention on.

III. WEDGE SUM RULES

There are two main applications of the sum rules dis-
cussed below. In the first case we can imagine the wedge
completely full of fluid, so that one is concerned with the
molecular scale structure of fluids confined in a wedge, as
could readily be studied by computer simulation procedures.
In the second class of application we can use the presence of
interfacial phase transitions to apply the sum rules to meso-
scopic or macroscopic interfaces arising from two-phase co-
existence within the wedge. In the latter case, the molecular
scale structure at the extreme apex of the wedge is of no
consequence. However, in the former case the results will be
dependent on the detailed molecular structure assumed by
the Hamiltonian(external field). Thus, let us first consider
the physical relevance of a wedge model when attractive
wall-fluid interactions are to be included.

Figure 2(a) depicts an iso-potential of the attractive part
of the wall-fluid interaction energy. I shall define a planar
wedge model to be restricted to this geometry; namely, all
iso potentials must possess an identical wedge shape. With-
out such a restriction, the apex region of a wedge(crossed
regions) would be highly model dependent and different iso
potentials would typically possess different geometries. For
the restricted class of model, the wedge model, one can in-
troduce the coordinate system of Fig. 2(b). In particular, I
can associate an ensemble-averaged wall force per unit area
(pressure) with a distancet from the apex of a wedge

p̄std ; E
xb

`

dxrsr d,xvextsr d s11d

FIG. 2. (a) Profile of the right-hand wall in Fig. 1, illustrating
(i.e., not drawn to scale) the significance of iso potentials of the
attractive part of the wall-fluid interaction(dashed lines). Each pla-
nar section of wall generates planar iso potentials defined by a
semi-infinite wall-fluid potential. The crossed regions, deep in the
apexes of the wedges, denote positions at which adsorbed mol-
ecules feel attractions from both adjoining walls(up to the iso po-
tentials depicted). This has been done simply to draw attention to
the fact that the full wedge model is the sum of the two wall-fluid
interactions acting on the apex regions.(b) Coordinate system used
to denote a molecular center positioned a distancet from a wedge
wall, along the other wall, at a distances from the infinite wall-fluid
repulsion boundary of the wall of interest.
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=−E
−`

`

dsrss,tdv8ssd, s12d

where the lower limit of the final integral is used to take full
account of repulsive interactions(i.e., any hard-wall contri-
bution [4]). That is, I have assumed a model such that the
external field due to a single wedge wall is of the form
vextsr d=vssd and the planar wedge geometry in the co-
ordinate system of Figs. 1 and 2 has allowed for the change
of variablesrsx,zd→rss,td. In some apex regions there are
significant contributions from both adjoining walls; i.e., two
integrals of the form(12), as discussed below in conjunction
with Fig. 4. Figure 2(b) can be used to illustrate the nature of
the integral(12); namely, the density profile is being sampled
along a horizontal line(fixed z and hence fixedt) with s,
defined as the perpendicular to the containing boundary,
varying accordingly. There is no Jacobian associated with the
change of variablesx→s because of the presence of the
derivative in the integrand. With this notation, any choice of
planar wall-fluid potential can be used in conjunction with
the planar wedge model defined as the intersection of two
semi-infinite planar walls. For example, consider a hard-wall
repulsionshwd together with a soft interaction or a square-
well attractionsattd

vssd = vhwssd + vattssd. s13d

For this class of model, Eq.(12) evaluates to

p̄std = kTrwstd −E
0

`

dsrss,tdvatt8 ssd s14d

;kT frwstd − r̄attstdg, s15d

where rwstd denotes the fluid density at the hard repulsive
boundary and I have definedr̄att because this quantity is
particularly physical for a square-well model. An illustration
of such a model applied to colloidal physics is shown in Fig.
3. Even in the absence of direct attractions the main effect of
solvent-solute and solvent-wall repulsions is to induce a
depletion attraction between colloidal particles with the walls
and with each other[12]. Let us use Fig. 3 to consider the

physical relevance of a planar wedge model. First, it is im-
portant to note that the wedge geometry belongs to the wall-
fluid interaction(the inner wedge depicted in Fig. 3) and not
necessarily the physical boundary(the outer boundary de-
picted in Fig. 3 including a jagged portion). Thus for colloi-
dal experiments it would not be necessary to perfectly ma-
chine the apex region of the physical wedge, because this
region is not part of the accessible phase space. For molecu-
lar fluids this remark is still relevant, but less dramatic. For
acute wedges the fluid at one wedge wall is significantly
influenced by the presence of the other wall, for distancest
from the wedge apex such thath is less than a fluid correla-
tion length. In this region, one would expectp̄std to be domi-
nated by the confinement of the fluid in the wedge and a
good approximation should be to setp̄std→pshd the solva-
tion or disjoining pressure in a planar slit model at wall
separationh, [3,12]. Beyond this regionp̄std reduces to the
bulk fluid pressurep; i.e., whenrss,td→rssd in Eq. (12). For
molecular systems, the choice of wedge model is directly
relevant to the fluid structure within a few molecular diam-
eters of the apex of the wedge, given that nanoscience
progresses sufficiently to be able to control such fine geomet-
ric detail and hence make this issue relevant. My choice of
model(wedge shaped iso potentials) is fully consistent with,
say, a square-well wall-fluid potential, but not with the strict
physical basis of a 9-3 or 10-4-3 potential obtained by inte-
gration over a semi-infinite solid. In these cases the planar
wedge model is double counting interactions coming from
the complementary wedge shape reflected into the solid
walls. Note that this issue is least significant for acute
wedges and there is no link here with nanoscopic values ofh
(which are associated with mesoscopic values oft for very
acute wedges).

We are now in position to be able to apply the virial route
to the general planar wedge model. When the right-hand wall
in Fig. 2(a) is moved, the virial theorem picks up contribu-
tions proportional to the integral ofp̄std out from the apex of
each wedge. Since only the right-hand wall is moved, there
is only one such integral for each of the top and bottom
wedges in Fig. 2(a), while in contrast there are two such
contributions from the middle wedge, making a total of four.
Note that by taking the thermodynamic limit the length of
the wedge walls can be regarded as macroscopic and so each
such integral can end half-way along a wall(denoted̀ be-
low) wherep̄std=p. The validity of the wedge sum rule ob-
tained from this procedure depends on each of these four
integrals being identical. This relies on the strict wedge-
shaped iso potentials sketched in Fig. 2(a) together with the
construction of Fig. 4. Note that Fig. 4(a) is relevant to the
bottom wedge in Fig. 2(a), while Fig. 4(b) concerns the
middle wedge. The virial procedure does not move the bot-
tom wall in Fig. 4(a) because it is lying parallel to thex axis.
This issue is relevant to the crossed regions in Fig. 2(a),
where the iso potentials of the attractive fields from adjoin-
ing wedges walls have overlapped. Given my interpretation
of Fig. 4, one can construct any number of identical wedges
out of the right-hand wall of Fig. 1 and so vary the wedge
angleb, then equate the right side of Eq.(10) with the right
side of Eq.(3). The latter generates a series of integrals over

FIG. 3. An illustration of a planar wedge model applied to col-
loidal physics. A single colloidal sphere is depicted trapped at the
apex of the wedge by the combination of depletion attractions with
both walls(the crossed region at the apex).
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p̄std multiplied by geometric factors needed to turn an inte-
gral overdz into one overdt, such as sinb in Fig. 2(b). The
total sum of these integrals can be viewed as a phasor dia-
gram such as the example of Fig. 5. For a detailed discussion
of this geometric procedure applied to hard-wall models, in-
cluding the trivial extension to include acute angled wedges,
the reader is referred to Ref.[4]. In summary, the above
virial procedure generates the important sum rule

g = − tansb/2dE
0

`

dtfp̄std − pgb, s16d

where the geometric prefactor has resulted from the phasor
analysis and the integral runs from the apex of a wedge out
along one of the planar sidewalls. Note thatg denotes the
interfacial free energy(surface tension) of the planar wall-
fluid interface arbitrarily far from the apex.

There is a closely related sum rule, the second important
wedge sum rule, that follows from the virial procedure

whereby the wedge angleb is varied; i.e., one of the walls is
moved while pivoted to the apex. This process changes the
fluid volume and the wedge angle, but not the surface area
exposed to fluid(2A), and so generates a sum rule concern-
ing the line tension(free-energy per unit length) t of the
wedge

V ; − pV+ 2gA + tLy. s17d

It is straightforward to write down the general sum rule for
]t /]b [3]. However, as with the first wedge sum rule, it is
not so straightforward to sort out the details of the model
dependence in the apex region of the wedge. If we use Fig. 3
to visualize the virial process involved, it is clear that since
only one of the wedge walls needs to be moved that the
result can be expressed in terms of an integral along that
wedge wall alone, just like sum rule(16). Provided all of the
iso potentials defined by our wedge model possess the wedge
shape drawn in Fig. 3, including the crossed region at the
very apex(as if the iso potentials extended inside the solid
walls), then the integrand should again be proportional to
fp̄std−pg. There will, however, be an extra power oft in the
integrand, due to the cylindrical coordinate system appropri-
ate to the new virial procedure[3]. That is, we must use Fig.
2(b) in conjunction with the definition ofp̄ and invoke the
samess,td coordinate system, but now with]s= t]b since all
the iso potentials are rotated by the same angle]b. A scep-
tical, or confused, reader might prefer instead to consider a
square-well wall model and directly evaluate Eq.(10) of Ref.
[3]. I shall simply quote the general result whose validity
depends on these subtle considerations:

] t

] b
= −E

0

`

dttfp̄std − pgb. s18d

Again, let me stress that the hard part of the derivation is to
understand the physical or molecular meaning of a wedge
model at the level of the molecular detail assumed at the
wedge apex. In the remainder of this paper I shall apply the
above sum rules to mesoscopic/macroscopic issues in capil-
larity, making use of wedge geometry, where the validity of
the wedge sum rules is on completely solid ground.

IV. CONTACT ANGLE SUM RULE FROM THE APPROACH
TO COMPLETE FILLING

If in the approach to bulk liquid-vapor coexistence(satu-
rated vapor) a wedge apex becomes filled with a concave
wedge of adsorbed liquid, as drawn in Fig. 6(a), then at
saturation the wedge will be filled with a macroscopic
amount of liquid even though the wedge walls are not com-
pletely wet by liquid. This corresponds to the condition
0,u,c where c;p /2−b /2 is a complementary wedge
angle andu denotes Young’s contact angle for a macroscopic
drop of saturated liquid sitting in mechanical equilibrium on
a semi-infinite planar surface(or arbitrarily far from the
wedge apex). As the vapor pressure is increased towards
saturation, the approach to complete filling of a wedge(as
just defined) is a continuous process, an example of a con-
tinuous interfacial phase transition analogous to but separate

FIG. 4. Coordinate systems for the density profilerss,td in a
planar wedge model.(a) With respect to one wall only. Due to the
wedge symmetryrss,td=rss8 ,t8d. (b) With respect to both walls, a
single point in space generates the values ofss,td andss8 ,t8d shown
in (a). By symmetry there is an equivalent position on the other side
of the wedge(not drawn).

FIG. 5. Phasor diagram for the derivation of sum rule(16) at
wedge angleb.p /2. The far right boundary is constructed fromn
unit lengths that form a series of identical wedges of angleb, span-
ning an arc of anglena and radiusR. Here drawn forn=3 but n
could be any positive integer. From then+3 sided polygon(solid
outer boundary), whose angles must sum tosn+1dp, we haveb
=np / sn+1d=na. From the vertical dashed line and any of the tri-
angles it follows that,=2R sinsb /2d=tansb /2d.
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from an approach to complete wetting at a planar surface(the
latter occurs atu=0 only). On a semi-infinite planar surface
an adsorbed drop at finite contact angle is not in thermody-
namic equilibrium, since eventually the drop of excess liquid
will evaporate to leave an adsorbed film of planar symmetry.
In contrast, the picture sketched in Fig. 6(a) is in both ther-
modynamic and mechanical equilibrium. When the amount
of adsorbed liquids,d is mesoscopic/macroscopic then the
influence of the apex region no longer extends to the three-
phase contact line that intersects the wedge walls att=R. The
angle u is then Young’s contact angle(in full equilibrium)
and mechanical equilibrium can be expressed as Laplace’s
equation for the macroscopic pressure differenceDp;pL
−pV, across the liquid-vapor interface, in terms of its radius
of curvatureRc; i.e.,Dp=−gLV /Rc. Wedge geometry is there-
fore an alternative and in some ways superior approach to
classical capillarity[13,14], for which we now possess two
powerful sum rules.

Consider the system depicted in Fig. 6(a) when all the
lengths specified in the diagram are mesoscopic/
macroscopic. The surface tension appearing on the left side
of sum rule(16) is the wall-fluid interfacial free energy, per
unit area, arbitrarily far from the wedge apexst=`d; i.e., g
=gSV. Introducing the thermodynamic definition of Young’s
contact angle and applying sum rule(16) therefore implies

gSV = gSL + gLV cosu s19d

=− tansb/2dHE
0

R

dtfp̄std − pL + Dpgb

+E
R−

R+

dtfp̄std − pgJ s20d

=gSL − RDp tansb/2d − tansb/2dE
R−

R+

dtfp̄std − pg.

s21d

Here the notation is such that the intervalR−, t,R+ covers
the nanoscopic range over which the SLV contact line inter-
sects(influences) the otherwise planar wall-fluid interfacial
structure att<R. Note that in this final integral in Eqs.(20)
and(21) and below, I do not label the bulk pressurep with a
subscript, although outside the rangeR−, t,R+ one must,
of course, takep=pV. This highlights the fact that the inte-
gral is formally defined for a macroscopic system(where the
difference between the saturated pressurep and the vapor
pressurepV has gone to zero). Any correction to this limit
would be at the level of the curvature correction togLV;
Tolman’s length[1,2]. Similarly, there is no subscriptb on
the integrand because the integral now belongs to a semi-
infinite system. Accordingly, from this particular application
of the wedge sum rule, we are led to a third important sum
rule, this time for Young’s contact angle. Namely, when
Laplace’s equation is used to eliminateDp and R/Rc is
evaluated as in the caption to Fig. 6(a), one obtains by equat-
ing Eq. (19) with Eq. (21) the following virial theorem for
Young’s contact angle:

gLV sin u = −E
R−

R+

dtfp̄std − pg. s22d

This remarkable result belongs to the same class of sum rules
as Eq.(15) and hence also the famous prototypep=kTrw
relating the bulk pressure to the density profile at a planar
hard wall. In hindsight the result(22) is obvious because
gLVsin u is the component of the liquid-vapor surface ten-
sion acting normal to the surface of the planar wall. An in-
teresting aspect of the sum rule is that by construction
Young’s contact angle is a mesoscopic/macroscopic quantity
formally defined by structure arbitrarily far from the three-
phase contact line, whereas the integrand on the right side of
sum rule(22) is nonzero only in a nanoscopic region defined
by the intersection of the range of the wall-fluid interaction
and the area over which the fluid density profile is influenced
by the intersection with the three-phase contact line. For ex-

FIG. 6. Wedge geometry with mesoscopic/macroscopic amounts
of adsorbed liquid, at finite Young’s contact angleu. (a) u,c
;p /2−b /2, so that increasing the vapor pressure towards satura-
tion leads to an approach to complete filling of a planar wedge.
From the large right-angled triangle we have, /Rc=scosu /coscd
−1 andR/Rc=fcosu / tansb /2dg−sin u. (b) Assuming the existence
of a continuous filling transition at bulk saturation a mesoscopic
amount of liquid has been adsorbed in the wedge atu.c. From the
two right-angled triangles we have, /Rc=1−scosu /coscd and
−R/Rc=fcosu / tansb /2dg−sin u. If one redrew the diagram to ap-
ply to contact anglesu.p /2 then the same geometric results are
just as readily derived, but, of course, physically such a wedge
would have to be dry in thermodynamic equilibrium. The boundary
between wetting and drying of a wedge isu=p /2, or ,=Rc=R for
any wedge angle.
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ample, for a standard square-well model this is restricted to
lie within half a molecular diameter from the repulsive
boundary. Thus, if there currently exists any doubt among
readers as to whether such a sum rule defines Young’s con-
tact angle or instead some ill-defined microscopic contact
angle presentat the interface, then the above derivation has
fully confirmed the former interpretation. This conclusion is
totally consistent with the structure of all wall-fluid virial
theorems, as discussed in Sec. II, which always relates prop-
erties defined by macroscopic thermodynamics(deep inside
the system) to structure present at the boundaries of the sys-
tem. In the case of sum rule(22) this structure is the defor-
mation by the three-phase contact line of the density profile,
that would otherwise be fully defined by the force generated
by the wall.

We are now presented with the interesting challenge that
the virial theorem for Young’s contact angle must be equally
consistent with the second wedge sum rule Eq.(18). Confir-
mation requires us to first identify the line tensiont for the
situation depicted in Fig. 6(a). This follows by treating the
equimolar dividing surface of the liquid-vapor interface(ex-
trapolated to the walls) and the wedge-shaped walls of infi-
nite wall-fluid repulsion as Gibbs dividing surfaces, in order
to define the excess wedge free-energy per unit length or line
tensiont, through the following decomposition of the fluid
Grand potential:

V = VSLsVL,ASL,Lyd + VSVsV − VL,A − ASLd

+ gLVALV + 2tSLVLy s23d

=− pLVL + 2gSLASL + tSLLy − pVfV − VLg

+ 2gSVfA − ASLg + gLVALV + 2tSLVLy s24d

=− pVV + 2gSVA − DpVL − 2sgSV − gSLdASL

+ gLVALV + stSL + 2tSLVdLy s25d

;− pVV + 2gSVA + tLy. s26d

In these equationsASL denotes that part of the area of each
wall that is wet by liquidst,Rd. There are three line tension
contributions:tSLV is the line tension of the three-phase con-
tact line,tSL is the line tension at the apex of the wedge(the
only contribution if the wedge was completely filled with
liquid), while the third, fourth and fifth terms on the right
side of Eq.(25) arise from volume and area contributions
due to the presence of two-phase coexistence in the wedge.
Inserting Laplace’s equation and Young’s Eq.(19) into Eq.
(25) and equating with Eq.(26) we have

t − tSL − 2tSLV

= gLVH 1

Rc

VL

Ly
− 2 cosu

ASL

Ly
+

ALV

Ly
J s27d

=gLVhsR cosu − b8Rc/2d − 2R cosu + b8Rcj s28d

=− gLVRcHR cosu

Rc
+

b

2
+ u −

p

2
J , s29d

where the volumes and areas have been evaluated from Fig.
6(a). The three-phase contact line tension is independent of
the wedge angleb so it is only tSL and the combination of
the two-phase coexistence terms that enter into sum rule
(18). That is, the wedge angle derivative is carried out at a
fixed bulk thermodynamic state, fixed temperatureT and
chemical potentialm (or vapor pressurepV), so thattSLV, u,
gLV, and Rc are all held fixed. Therefore, calculating the
derivative ofR/Rc as given in the caption to Fig. 6(a), the
left side of sum rule(18) evaluates to

] t

] b
=

] tSL

] b
+

gLVRc

2
H cos2u

sin2sb/2d
− 1J . s30d

In the situation depicted in Fig. 6(a) the right side of sum
rule (18) evaluates to

−E
0

R

dttfp̄std − pL + Dpgb − RE
R−

R+

dtfp̄std − pg

=
] tSL

] b
−

R2Dp

2
+ RgLV sin u, s31d

where in the final term I have substituted sum rule(22).
Consistency between all three sum rules therefore requires
the last few terms in Eqs.(30) and(31) to be equal. This final
step follows by substituting Laplace’s equation forDp:

] Dt

] b
=

gLVRc

2
HS R

Rc
D2

+ 2
R

Rc
sin uJ s32d

=
gLVRc

2
H cos2 u

tan2sb/2d
− sin2 uJ s33d

=
gLVRc

2
H cos2 u

sin2sb/2d
− 1J . s34d

Note that here I have definedDt;t−tSL−2tSLV, which is
the line tension arising from the presence of macroscopic
liquid-vapor coexistence in the wedge. The only other con-
tribution to ]t /]b arises fromtSL, which is the apex line
tension discussed in the previous section; i.e., arising from
the regiont and h both less than a liquid state correlation
length (see Fig. 3).

V. FILLING TRANSITIONS

The quantityDt defined in the previous section is the free
energy per unit length controlling interfacial phase transi-
tions associated with planar wedge geometry. For example,
in the situation depicted in Fig. 6(a) we have , /Rc
=scosu /coscd−1 and so if the system approaches satura-
tion at fixedT and finite contact angleu,c it follows that
singular behavior can only arise fromRc; i.e., ,,Rc. Since
−gLV /Rc=Dp→Drdm it follows that ,,udmu−1 in the ap-
proach to complete filling from off two-phase coexistence
sdm=0d [14]. The special situationu=c yields an empty
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wedge(no macroscopic filling) except at saturation. At bulk
liquid-vapor coexistence higher-order terms in, /Rc (typi-
cally beyond geometry, such as dispersion interactions) can
theoretically lead to a mesoscopic/macroscopic amount of
filling along a pathu→c from above. Experimentally one
would envisage changingT andm along the bulk coexistence
curve to letu approachc at fixed geometry, but in terms of
the singular behavior this is mathematically equivalent to
varying the wedge angle so thatc approaches a fixedu.0
(i.e., at fixedT,m). If the amount of liquid in the wedge were
to diverge continuously along either of these paths in phase
space, then one would observe the critical filling transition
predicted by Parry, Rascon, and Wood[5,6]. The purpose of
this section is to note that sum rule(18) is immediately ap-
plicable to critical filling at fixed temperature and chemical
potential.

First, however, we need to extend our analysis of the
wedge angle sum rule to the caseu.c, where complete
filling is absent at saturation. From Fig. 6(b) we see that the
only difference with our analysis above is thatDp has
changed sign. In turn, this means that the derivation leading
to Eq.(34) goes through unchanged, apart from a minus sign
appearing on the right side. Introducing the amount of filling
, and the complementary wedge anglec, as in the caption to
Fig. 6 so that in particular sinsb /2d=cosc, one finds that for
all values ofu sum rule(18) can be written as

] Dt

] b
=

gLV,

2
S cosu

cosc
+ 1D . s35d

At filling, defined byu=c, where the liquid-vapor interface
has a macroscopic curvature of precisely zero, this sum rule
reduces to the simple result

] Dt

] b
= gLV,. s36d

The physical interpretation of this special case is that the
torque ]Dt /]b arises entirely from the stretching or com-
pression of a flat liquid-vapor interface of area
2R sinsb /2dLy; i.e., atu=c the wedge geometry reduces to
R cossb /2d=R sin u=,.

The significance of the exact result(36) to critical filling
is that it implies an amplitude relation and a critical exponent
relation, since the singular contribution to the free energy
must be contained inDt. Writing

Dt = Atsdbd2−aw, , = A,sdbd−bw, s37d

wheredb;b−p+2u, it follows from the sum rule(36) that

At

A,

=
gLV

s2 − awd
, 1 −aw = − bw. s38d

Exactly the same exponent relation applies to an approach to
complete wetting at a planar interface(see, e.g., Ref.[2]),
however, Parry and co-workers have shown that the manner
in which this exponent relation is satisfied for critical filling
is far more complicated. In fact, the main correspondence(or
covariance) is with critical wetting at a planar surface(espe-
cially in strong fluctuation regimes) except that bothd and

d−1 dimensional exponents, or contributions to the expo-
nents, are present[5,6].

VI. DISCUSSION

In this paper I have derived three important sum rules that
constrain the structure and free energy of fluids adsorbed in
planar wedges and at the planar walls. The first sum rule
links the interfacial free energy far from the wedge apex to
the structure induced at the apex. The second sum rule links
the free energy of the apex region to the structure induced by
the apex. The generality of these results hinges on whether or
not one can usefully define a general class of wedge models.
I argued that requiring all iso potentials of the wall-fluid
potential to possess planar wedge geometry is a sufficient
criterion for any such model to satisfy the wedge sum rules.
Of course, given the complexity of the details involved with
Fig. 4 it would be helpful to confirm this conclusion with
computer simulation procedures applied to a model of the
class defined in this paper. I have also noted a warning that,
in general, this strict adherence to wedge symmetry deep
within the apex region will not always be a truly realistic
model of an experimental system, at the molecular level.
Notwithstanding this caveat, it is important to develop mod-
els of structured substrates that allow for attractive wall-fluid
interactions, as proposed in this work. Alternative classes of
models will satisfy analogous virial theorems for the same
physical reasons, derivable by similar procedures, but the
simplicity of the final forms might have to be sacrificed.

In Secs. IV and V above I have made use of planar wedge
geometry to consider, from this different perspective, the sta-
tistical mechanics of classical capillarity. Because of the
presence of complete filling in a wedge at finite values of
Young’s contact angle, it is physically possible to ensure me-
soscopic or macroscopic two-phase coexistence within a
wedge. In this situation, the details of the molecular structure
at the wedge apex become irrelevant and the wedge sum
rules describe the classical capillarity associated with
Laplace and Young. In particular, both sum rules yield a
virial theorem for Young’s contact angle. This final result
links the macroscopic contact angle and the liquid-vapor sur-
face tension, defined arbitrarily far from the wedge walls, to
the distortion of the density profile within the range of the
wall potential due to the intersection of the three-phase con-
tact line with the wedge walls. From the derivation of the
contact angle virial theorem it follows that it is an expression
of mechanical force balance normal to the interface and as
such is the twin to Young’s Eq.(19) expressing force balance
parallel to the interface. When expressed in this context, it is
clear that the contact angle virial theorem will have been
addressed in one form or another many times before. The
value of a wall-fluid model is that the normal force due to the
wall can be trivially expressed in terms of a one-body den-
sity profile and the external(wall) field. This important in-
terpretation does not appear have been appreciated before. In
particular, sum rule(22) allows for the calculation of an in-
terfacial free energy directly from an average over one-body
structure. Typically, such a dramatic improvement in compu-
tational efficiency is associated with the derivative of a free
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energy(an order parameter) rather than with the free energy
itself. This has arisen because, as with the prototype hard-
wall result p=kTrw, the sum rule was derived from virial
theorems in which the thermodynamic field derivative is
with respect to a geometric quantity defining the system size,
and so the associated order parameter is an intensive free
energy. Finally, I have applied sum rule(18) to critical filling
transitions. Given the physical existence of a critical filling
transition, the line tension must contain a singular contribu-
tion as a function of wedge angle. This wedge sum rule
therefore contains important information about interfacial
critical phenomena in wedge geometry.

The study of adsorption in planar wedges is of relevance
to other realizations of the wetting of structured substrates.
Annular wedges, such as formed in the surface forces appa-
ratus, will display analogous physics. The sum rules derived
in this paper are of immediate value to computer simulation
procedures, which can simulate the identical class of models,
but the associated physics is of direct relevance to experi-
ments and technology based on microstructured or nano-
structured substrates. The virial theorem for Young’s contact
angle would appear to have wide significance to classical
capillarity, as an exact realization of contact angle phenom-
ena and as a direct route to calculating interfacial free ener-
gies from one-body structure.
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APPENDIX: PAIR POTENTIAL MODELS

For a pair potential model we write

F =
1

2o
i

o
jÞi

fsr ijd. sA1d

The final term in Eq.(5), the general expression of mechani-
cal equilibrium, then evaluates to

ko
i

dsr − r id¹i
xFl = −Ko

i
o
jÞi

dsr − r idsxj − xid
f8sr ijd

r ij
L

sA2d

=−U E dr 2rs2dsr 1,r 2dsx2 − x1d
f8sr12d

r12
U

r 1=r
.

sA3d

The final term in Eq.(7) is therefore

E
xb

`

dx1E
0

xb

dx2E
0

Ly

dy2E
0

Lz

dz2rs2dsr 1,r 2dsx2 − x1d
f8sr12d

r12

= −
1

2
E

−`

`

dx12x12
2 E

0

Ly

dy2E
0

Lz

dz2rs2dsr 1,r 2d
f8sr12d

r12
,

sA4d

where I have made use of the symmetry of the integrand to
write the left-hand side and the short-ranged nature of the
integrand to obtain the right-hand side. So, dropping the un-
wanted contributions from the side walls aty=0,Ly, the right
side of Eq.(7) for a pair potential model is

kTrszd −
1

2
E

−`

`

dx12E
−`

`

dy12E
0

Lz

dz2

3rs2dsr12,z,z2dx12
2 f8sr12d

r12
, sA5d

which is the transverse component of the pressure tensors of
Harasima and Kirkwood and Buff[1,11]. That is, the inte-
grand of Eq.(4) is precisely the form expected.

[1] J. S. Rowlinson and B. Widom,Molecular Theory of Capillar-
ity (Clarendon, Oxford, 1982).

[2] J. R. Henderson,Fundamentals of Inhomogeneous Fluids, ed-
ited by D. Henderson(Dekker, New York, 1992), Chap. 2.

[3] J. R. Henderson, Physica A305, 381 (2002).
[4] J. R. Henderson, J. Chem. Phys.120, 1535(2004).
[5] A. O. Parry, C. Rascon, and A. J. Wood, Phys. Rev. Lett.85,

345 (2000); A. O. Parry, A. J. Wood, and C. Rascon, J. Phys.:
Condens. Matter13, 4591(2001).

[6] A. O. Parry, C. Rascon, and A. J. Wood, Phys. Rev. Lett.83,
5535(1999); A. O. Parry, A. J. Wood, and C. Rascon, J. Phys.:
Condens. Matter12, 7671(2000); A. O. Parry, M. J. Greenall,
and A. J. Wood,ibid. 14, 1169(2002); M. J. Greenall, A. O.
Parry, and J. M. Romero-Enrique, preprint(2004).

[7] R. Shuttleworth and G. L. J. Bailey, Discuss. Faraday Soc.3,
16 (1948).

[8] P. Concus and R. Finn, Proc. Natl. Acad. Sci. U.S.A.63, 292
(1969).

[9] J. R. Henderson, J. Phys.: Condens. Matter11, 629 (1999).
[10] M. M. Bakri, Physica(Amsterdam) 32, 97 (1966); this appar-

ently forgotten early work contains a general analysis relevant
to my Sec. II, but readers should beware that the final section
has not withstood the test of time. A similar approach was
presented much later by M. J. P. Nijmeijer and J. M. J. van
Leeuwen, J. Phys. A23, 4211(1990).

[11] See, for example, P. Schofield and J. R. Henderson, Proc. R.
Soc. London, Ser. A379, 231 (1982).

[12] For a review of the statistical mechanics of depletion interac-
tions see J. R. Henderson, Physica A313, 321 (2002).

[13] Y. Pomeau, J. Colloid Interface Sci.113, 5 (1986).
[14] E. H. Hauge, Phys. Rev. A46, 4994(1992).

STATISTICAL MECHANICS OF FLUIDS ADSORBED IN… PHYSICAL REVIEW E 69, 061613(2004)

061613-9


